• Also recall : A linear transformation between
two vector spaces is a function L: V -> W
which ratifies:
(i)
$$L(V_1+V_2) = L(V_1) + L(V_1)$$
, $V_{i}, V_{i} \in V$
(2) $L(KV) = k \cdot L(V)$, $V \in V$
(2) $L(KV) = k \cdot L(V)$, $V \in V$
(3) $L(KV) = k \cdot L(V)$, $V \in V$
(4) $V \in V$
(5) $L(KV) = k \cdot L(V)$, $V \in V$
(6) $V \in V$
(7) $V \in See$ that L is a howemorphism
of the moleclying promps.
(5) $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $L(X_0) = (K+20, Y-X)$
is line fransf, so also a home.
note: $L \overrightarrow{V} = A \overrightarrow{V}$ for some metwork A
wore precisely: $L: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ then A is norm within
in the above example : $A = [-1, 2]$
check: $[-1, 1] [\overrightarrow{A}] = [-x+20]$
(K , cu additive function
 $V = (2) = \overrightarrow{V}$ a grap home
 $(\sigma, cu additive function)$
 $V = (2) = \overrightarrow{V} = (2) = (2 + 1)^2 = 1$
 $Sut Q is ust a ξ -linear transformation between
those two C -dector spaces is in $(a, e_0::$
 $Q(i z) = iz = iz = -iz = i Qz)$$

Example Recall:
$$exp: (\mathbb{R}, +, 0) \longrightarrow (\mathbb{R}, 0, 0, 1)$$

As a hom. Since $e^{Xt} \partial = e^{X} e^{2X}$. In fact expision
Example For any are G, we have a hom.
 $Q: Z \longrightarrow G$, $Q: (\mathbb{R}, +, 0) \longrightarrow (\mathbb{R}, 0, 0, 0, 1)$
 $X \longmapsto e^{Xt} \partial = e^{X} e^{2X}$. In fact expision
 $So.$
 $So.$
 $Pair (n) = a^{N}$. It image is $Q(Z) = \langle a \rangle$

The equivalence dastes under 2 are called
is observed in classes of groups.
Example (1) Z4 2(i) where Z4 =
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\$$

Lemma Ant (G) is a subgroup of Sym(G):
[Aut (G) is a subgroup of Sym(G):
[Aut (G) = 5
$$\varphi \in Sym(G)$$
: $\varphi = hom$ }
Trod Recall Sym(G) = 2 cll Sijections $G \rightarrow G$ } is
a group with $\# = 0$ and $e = id_G$
So Ait(G) inherits this operation from Sym(G)
and is clearly clard under compositions &
inverser.
Example (Ant(Z) $\stackrel{\sim}{=} \frac{Z_2}{2}$)
recall that any hom $\Re Z \rightarrow Z$ is of the form
 $\varphi(a) = n a$, for some $n \in \mathbb{Z}$
Such a map is surjective $\cong n = 1 \propto -1$
Example (Aut(Zn) $\stackrel{\sim}{=} \frac{Z_n}{2n}$)
recall that any hom $\Re Z_n \rightarrow Z_n$ is of the form
 $\varphi(E) = (rk)_n$ for some $0 \leq r \leq n-1$
Such a map is a bijection $\stackrel{\sim}{=} gcd(Cn) = 1$
Such a map is a bijection $\stackrel{\sim}{=} gcd(Cn) = 1$
 $\stackrel{\sim}{=} Example$ (Aut(\mathbb{Z}^n) $= GL_n(\mathbb{Z})$)