Group Theory
Week \#3, Class \#10
I Group Ho momorphisms, Isomorphisms, and Antoruughisus
Recall some definitions:

1. How A homomorphism is a function $Q_{1} G_{1} \rightarrow G_{2}$ between two groups, satisforing:

$$
(*) \quad \varphi(a b)=\varphi(a) \cdot \varphi(b) \quad \forall a, b \in G_{1}
$$

Here we use. for the operation on both sides. If the grows are abelian (ie, commutative), he usually use + for the respective ops, and (x) is written as
(5) $\varphi(a+b)=\varphi(a)+\varphi(b) \quad \forall a, b \in G$

Extenoled example (connection W) linear Algebra)

- Let V be a vector space (our ail field F) usually $F=\mathbb{R}$

$$
\begin{aligned}
& F=(F,+, 0)-(F, t, 0) \text { abeliangronp } \\
&-\left(F^{X}, 0,1\right) \text { alpo abelian grue } \\
& \text { distributes throng rums } \\
& a(b+2)=a b \text { a } c
\end{aligned}
$$

- Eg: $V=\mathbb{R}^{n}, \mathbb{Q}^{n}, \mathbb{C}^{n}, \mathbb{Z}_{p}^{n}$
- Then V has tres ops: $\left\{\begin{array}{l}t \text { (vector) abolition }\end{array}\right.$

$$
\begin{array}{ll}
V \times V \xrightarrow{\longrightarrow} V+w \\
(v, \omega) \longrightarrow V+w \xrightarrow{F} \quad F \\
(k, v) \longrightarrow k \cdot V
\end{array}
$$

- Abs recall: A linear transformation between two vector spaces is a function $L: V \rightarrow W$ which satisfies:
(1) $L\left(V_{1}+V_{2}\right)=L\left(V_{1}\right)+L\left(V_{2}\right), \quad \forall v_{1}, V_{2} \in V$
(2) $L(k V)=k \cdot L(v) \quad, \quad \forall V \in V$
- Just retaining condition (1) Eukich is the same as $\left.\left(x^{*}\right)\right]$, we see that L is a homomorphism of the underlying groups.
$\stackrel{I}{t} \quad L: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad L(x, y)=(x+2 y, y-x)$ is lin trenst, 50 also a hon.
note: $L \vec{V}=A \vec{V}$ for some matrix A
wore precisely: $L: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ then A is $n \times m$ matrix in the above example: $\quad A=\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$

$$
\text { check, }\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
-x+y
\end{array}\right]
$$

Remark Not even group hon between two vector spaces is a linear transformation! $z=x+i y \rightarrow z=x-i y$
Example $\varphi: \mathbb{C} \longrightarrow \mathbb{C} \quad \varphi(z)=\bar{z} \quad$ a graph how cos, an additive function
in $\varphi(z+w)=\varphi(z)+\varphi(w)$, since $\overline{z+w}=\bar{z}+\bar{w}$
But φ is not a c-linear traurfirnction between Those trio \mathbb{C}-vector spaces, since, egg.:

$$
\varphi(i z)=\overline{i z}=\frac{1}{i} \bar{z}=-i \bar{z}+i \bar{z}=i \cdot \varphi(z)
$$

$$
(i f z \neq 0)
$$

Example Recall: $\exp :(\mathbb{R},+0) \longrightarrow\left(\mathbb{R}_{>0}, 0,1\right)$

$$
x+x+x_{x+2} e^{x}
$$

is a how. since $e^{x+y}=e^{x} \cdot e^{y}$. In fact expisan
Example For any $a \in G$, we have a hon.
$\varphi_{a}: \mathbb{\longrightarrow} \longrightarrow, \varphi_{a}(n)=a^{n}$. It image is $\varphi_{a}(\mathbb{Z})=\langle a\rangle$
2. Iso Def An isomorphism is a friction $\varphi: G_{1} \rightarrow A_{2}$ between two groups which is both a homomorptian anal a bijection.

- We gar that: (c) If $\varphi: G, \rightarrow h_{2}$ iso, then $\varphi_{:}^{2}: G_{2} \rightarrow G_{1}$ iso

Lemma (b) If $\varphi_{1}: G_{1} \rightarrow G_{2}$ and $\varphi_{1} G_{2} \rightarrow G_{3}$ are hour, then $\varphi_{2} \circ \varphi_{\text {, }}$ is also a home.
(2) Moreover, if both $\varphi_{1} \& \varphi_{2}$ are isos then $\varphi_{2} \circ \varphi_{1}$ is also an iso.
Proof $(1)\left(\varphi_{2} \circ \varphi_{1}\right)(a b)=\varphi_{2}\left(\varphi_{1}(a b)\right)=\varphi_{2}\left(\varphi_{1}(a) \varphi_{1}(b)\right)$

$$
\begin{aligned}
& \text { byteff. } \varphi_{1} \text { is hmm } \\
& \overline{\bar{T}}_{\bar{\pi}_{3}} \varphi_{2}\left(\varphi_{1}(a)\right) \cdot \varphi_{2}\left(\varphi_{1}(b)\right) \\
& \varphi_{2} \text { is hmm } \\
& \text { bo } \circ \operatorname{lof}_{f 0}^{=}\left(\varphi_{2} \circ \varphi_{1}\right)(a) \cdot\left(\varphi_{2} \circ \varphi_{1}\right)(b)
\end{aligned}
$$

(2) The composition of any two bijection $i s$ again a bijection $\left(f_{1}: \$_{b_{j}} \rightarrow s_{2}, f_{2}: s_{2, j} \rightarrow s_{3} \Rightarrow\left(f_{2} \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1}\right)$

Def Two groups are said to be somorphiz of there is an isomurplism between them:

$$
G_{1} \cong G_{2} \stackrel{\text { def }}{\rightleftharpoons} \exists \varphi: G_{1} \rightarrow G_{2} \text { isomorphism }
$$

Lemma \cong is an equivalence relation un groups.
Proof. Reflexitivity $(G \cong G): \quad$ id $G: G \longrightarrow G$ is an iso

- Symmetry $\left(G_{1} \cong G_{2} \Rightarrow G_{2} \cong G_{1}\right)$: if $\varphi_{2} G_{1} \rightarrow G_{2}$ is o, then
- Truustinisy $\binom{G_{1} \& G_{2} \& G_{2}=G_{3} \Rightarrow}{G_{1} \rightarrow G_{3}}$: $\varphi^{r}: G_{2} \rightarrow G_{1}$ is also an iso by (t)
By Lemuria, pat ca above

The equivalence disses under $\&$ are called is omorplinim c la sees of 9 oinpos.
 isomorplison: $\quad \bar{\varphi}: \mathbb{Z}_{4} \rightarrow\langle i\rangle \quad\langle i\rangle=\left(\begin{array}{ll}\{1, i,-1,-i\}, 0,1)\end{array}\right.$ $\varphi\left([k]_{4}\right)=i^{k}$
ie. $[0]_{4} \rightarrow 1,[1]_{4} \rightarrow i,[2]_{4} \longrightarrow-1,[3]_{4} \longrightarrow-i$
another iso: $\quad \psi: \mathbb{Z}_{4} \rightarrow\langle i\rangle, \psi\left([j]_{4}\right)=(-i)^{k}$
$\#\left\{\right.$ isis from \mathbb{Z}_{4} to $\left.\langle i\rangle\right\}=\left|\mathbb{Z}_{4}^{x}\right|=\phi(4)=2$
Example Any groupGof prime order p is isomorphic to \mathbb{Z}_{p}.
reason: Since $G A=p$ is prime, G inst be cyclic (by Lagrange), say, $G=\langle a\rangle$. Then define $\varphi: \mathbb{Z}_{p} \longrightarrow G, \varphi\left(\left[Z_{p}\right)=a^{k}\right.$, This is an iso, with inverse $\varphi^{-1}\left(a^{k}\right)=[k]_{p}$.
Example O_{n} the other hand, we saw that $\mathbb{Z}_{4} \not \approx \mathbb{Z}_{2} \mathbb{Z}_{2}$ In fact, these are the coly groups of order 4, sp to isomorphism:
n. if $|G|=4$, then $G \cong \mathbb{Z}_{4}$ or $G \cong \mathbb{C}_{2} \times \mathbb{C}_{2}$.

Groups of low order

$\|G\|$	1	2	3	4	5	6	7	8
G	$\left.s_{1}\right\}$	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{4}	\mathbb{Z}_{5}	\mathbb{Z}_{6}	\mathbb{Z}_{7}	\mathbb{Z}_{8}
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$		S_{3}						
$\mathbb{Z}_{4} \times \mathbb{Z}_{2}$								
$\mathbb{Z}_{2} \times \mathbb{R}_{2} \times \mathbb{U}_{2}$								
Q_{8}								
D_{8}								

Remark We can distinguish oftentimes iso classes of groups G by looking at the under of elements of given order $k|G|$

$$
t_{k}(G):=\#\{a \in G \mid \quad \theta(a)=k\}
$$

This method shorsithat $\mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{A}_{2} \times \mathbb{R}_{2}, Q_{8}, D_{8}$ are wot pairwise isomorphic $\binom{\left.Q_{8}=3 \pm 1, \pm j, \pm k, \pm e\right)}{D_{8}=$ symuetres of square }
Computational Challenge Find a pair of groups, $6,8 G_{i}$, which are not iso, but the t_{l}-functintims are the same.
Example Recall $\left(\mathbb{R}_{+}\right) \cong\left(\mathbb{R}_{>00^{\circ}}\right)$, Sine exp: $\mathbb{R} \rightarrow \mathbb{R}_{>0}$ How about (\mathbb{R}, f) and $\left(\mathbb{R}^{X}, 0\right)$, are they iso?
Answer: no! Reason

- $(\mathbb{R},+)$ has no elements of finite mole, except 0
(Since $\underset{\substack{x \neq 0}}{ }(x)=n \Rightarrow n x=0 \underset{x \neq 0}{\Rightarrow} n=0$)
- $\left(\mathbb{R}^{x}, \cdot\right)$ has an element af finite onoler, and from different namely, $x=-1: \quad(-1)^{2}=1$, so $o(x)=2$.
III Autos Def An automorphism is an isomorphism from a group to itself:
φ auto $\stackrel{\text { def }}{\Rightarrow} C: G \rightarrow G$ iso
Rem. A more general notion is that of an endomorphism, i \therefore, a homomophsm $\varphi: G \longrightarrow G$.
Define: \quad Ant $(G):=\{\varphi: G \longrightarrow G: \varphi$ automorphism $\}$

Lemma Ant (G) is a subgroup of $\operatorname{Sym}(G)$ i
Ant $(G)=\{\varphi \in \operatorname{Sym}(G): \varphi$ a hum $\}$
Proof Recall $\delta y_{m}(G)=\{$ all ejections $G \rightarrow G\}$ is a group with $*=0$ and $e=i d g$
So Ant (G) invents this operation from Sym (G) and is clearly closed under compositions \& inverses.
Example $A n t(\mathbb{E}) \cong \mathbb{Z}_{2}$
recall that any hon $\varphi \mathbb{Z} \rightarrow \mathbb{Z}$ is of the form $\varphi(a)=n a$, for some $n \in \mathbb{Z}$
Such a map is surjective $\Leftrightarrow n=1$ or -1
Example A At $\left(\mathbb{Z}_{n}\right) \simeq \mathbb{Z}_{n}^{x}$
recall that any hom $\varphi_{1} \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is of the form $\varphi\left([k]_{n}\right)=[r k]_{n} \quad$ for some $0 \leq r \leq n-1$ Such a map is a bijection $\Leftrightarrow \operatorname{gcd}(r, n)=1$ $\Leftrightarrow[r]_{n} \in \mathbb{Z}_{n}^{x}$
Example $\sqrt{A n t}\left(\mathbb{Z}^{n}\right)=G L_{n}(\mathbb{Z})$

